Non-Confidential Description - PSU No. 2623
“Piezoelectric Shear-Shear Mode Motor”

Keywords:
piezoelectric motor, shear-shear

Links:
Inventor website
U.S. Patent #7,095,160

Inventors:
Kenji Uchino, Shuxiang Dong, Michael Strauss

Background
Piezoelectric ultrasonic motors have exceptional properties, such as high resolution of displacement control, an absence of parasitic magnetic fields, frictional locking at the power-off stage, and high thrust-to-weight ratio, all of which make them good candidates for use in precision micromechanical systems (in medical devices, for example). However, they also have several disadvantages, including a need for high voltage, high frequency power sources, and potential wear at the rotor/stator interface. While conventional piezoelectric ultrasonic motors provide satisfactory performance, they primarily utilize a transverse length extension mode for exciting a traveling flexure wave with a low piezoelectric effect. In the operational mode, the relatively low effects of the piezoelectric ceramic material hinders additional development of these types of motors.

Invention Description
This disclosed invention is a piezoelectric motor and a method of exciting an ultrasonic traveling wave for driving the motor; the invention includes a method for driving a rotary motor using a rotary shear vibration mode, as well as a method for driving a linear ultrasonic motor using the linear shear vibration mode of piezoelectric ceramics. Because of higher values of the electromechanical coupling factors k_{15} in perovskite type piezo-ceramics, these shear-motors exhibit better motor performance.

Advantages/Applications
- Reduced size and increased efficiency compared to other piezoelectric motors
- Increased output of mechanical energy
- Easier to miniaturize